Illumos (v9os) on SPARC64 SunFire v100

Over the last month or so I’ve written a couple of articles on an old SunFire v100 machine that I own for a while now. First I took a look at the hardware of the machine and the LOM (Lights Out Management). Then I installed OpenBSD 6.0 from CD and updated all the way to 6.5. Finally I played a bit with OpenBSD to see what it can do and how well it supports SPARC64. This post will be the last SPARC64 one before I visit other topics again.

v9os?

While I was pretty happy with OpenBSD on the SunFire, there’s one reason that I wanted to try out something else, too. That reason has three letters: Z-F-S. The first thing that I tried out when I got the hardware, was FreeBSD – but I ran into problems. I’ve managed to overcome circumvent them (might be worth another story in the future), only to find that FreeBSD does not support ZFS on SPARC64!

One option that suggests itself, is just putting Solaris on there. I have a copy of Solaris 10 for Sparc, but I prefer to keep things Open-Source. Also there’s the problem, that my machine is old enough to not have a DVD drive and it doesn’t support booting from USB and the like.

So it’s illumos. Since I’m really just getting started with the broader Solaris universe, I had to do a little research first. And I was a little surprised that most illumos distros seem to not even support Sparc at all! Of the four that do

  • OpenSXCE seems dead (last release in 2014)
  • DilOS uses Debian packaging (which is not my cup of tea at all)
  • Tribblix sounds really interesting to me, but does not fit on a CD
  • v9os is a minimal Sparc distro that is small enough

As you can see, there wasn’t so much choice after all! While v9os is an experimental one-man project that you should probably stay away from for production use, it might be just right for my purposes of tinkering with an old machine.

Installing the OS – first try

There are not many preparations necessary: I downloaded the ISO image and burned it on a CD. Then I connected to my SunFire via serial, powered it on and put the CD into the drive. It takes quite some time, but after a while I can read that v9os is in fact starting.

Booting up v9os from the CD

After the system booted, it gives the user the option to select a keymap.

Keymap selection

Then it shows the installation menu. There you can choose if you want to install, load additional drivers, drop to a shell, change the terminal type or reboot. I go with the first option.

v9os installation menu

After a moment the installer has started an a welcome screen is printed. Unfortunately in my case there’s a problem with the CD, so that four lines of debug info overwrite important information: How to actually proceed with the installation! But this is an OpenSolaris derivative, and so it’s not that hard to figure out that F2 is the key to go on.

v9os installer: Welcome screen

Next it’s selecting the disk to install on. I thought that it all looked good – and didn’t pay much attention to the message “A VTOC label was not found.”. VTOC is the Volume Table Of Contents, the SPARC partition scheme (think MBR/GPT on amd64). We’ll come back to that a little later. 😉

v9os installer: Disk selection

I think that the installer is quite nice. It even offers help pages that give newcomers like me an idea of what they should do for the current step. Great work on that!

v9os installer: Disks help page

Then you can choose to either dedicate the whole disk to v9os or just use a slice. I decide to go the easy route and select the former.

v9os installer: Disk layout selection

Now the installer wants to know the hostname for the new system. The suggested default of v9os is fine for me since I don’t plan to add another machine with that OS to my network anytime soon.

v9os installer: Hostname selection

Finally you can select the time zone – or rather: the zone region.

v9os installer: Time zone selection

Unfortunately things went sideways after that choice and I had to reset the machine…

Ok, after going through the previous steps again, I decided to give the advanced setup a try and selected slicing up the drive.

v9os installer: Slice selection

Unfortunately the result was the same as before: The installer just died. I tried again a few times, playing with different slice setup, but didn’t have any luck.

The installer died… Time to reboot.

At this point I was out of ideas on what else I could try, so I removed the CD and powered down the system.

Writing the label manually

When I powered the system on again, I had forgotten that I removed the CD and to my surprise OpenBSD (the system that I had previously installed on the machine) booted up! This meant that the installer had not even changed anything on the disk, yet!

My next guess was (and still is) that the v9os installer might have problems with BSD disklabels being present on the drive. I took a look at the disklabel from OpenBSD, just to find out some information about the drive.

OpenBSD’s disklabel information of the system hard drive

Then I booted the v9os install medium again but this time selected the shell option. After a little research I found out how to get some drive information on Solaris with iostat.

v9os shell session: Collecting drive hardware info

Next I decided to give the format utility a try. I don’t know if v9os stripped down some hardware information and that together with the disk being really old, it wasn’t properly auto-detected. So I had to do something that I haven’t done in years (and never missed it): Typing in the geometry information by hand!

Typing in disk geometry information (Ah, the (bad!) memories…)

Once the drive has been described to the utility, it shows a menu of what it can do. I haven’t used that program before and judging from the name alone was a bit surprised at how powerful it seems to be. Things like being able to define profiles must have been pretty useful in the past.

Solaris’ format utility

Since I want to partition the drive, I select that. I’m presented with a sub-menu, giving me some more choices.

Partitioning menu of format

I have no clue what a Solaris partitioning scheme should look like (need to explore some older versions of that OS somewhen!).

Partitioning the drive for Solaris

So I look around a little but eventually accept the proposed default and just hope that this works.

Installing the OS – second try

After restarting the machine again and choosing the installer, it looks like this time there is no missing disklabel. At least! But will it make a difference?

Returning to the installer: Partitioning was detected

And yes! Now the installer continues and gets the data written to disk!

Finally installing the OS!

The process takes quite a while – but that’s due to the slow machine that I’m using. Eventually the installation is finished.

v9os installer: All done!

First steps with v9os

Another reboot and after removing the CD-ROM from the drive, the freshly installed system boots up. A moment later it displays the prompt where I can log in using the user root and the password solaris.

First start of v9os

The first thing that I want to do is to get rid of the serial console. So I set up networking and enable SSH.

Setting up networking and enabling SSH

Then I disable the automounter to make the home directory writable and create a user for remote SSH login. Finally I enable the machine to do name resolution and give the new user a password.

Adding a user and name resolution capabilities

That should suffice to SSH into the box from another machine.

Package management with IPS

Logging in remotely works just fine. As v9os does not have an online package repository, I have to download a compressed copy of the repository from SourceForge.

SSHing into the v9os box and downloading the package repository

I don’t know much about the IPS package system and thus really struggle to make it all work. There is no guide on the v9os site and so I try to put the downloaded file in various locations, decompress it and try everything again. Since that also doesn’t work, I unpack the contents of the archive but still cannot get it right…

Struggling to get the repo working…

After more than an hour of struggling with pkg, reading manpages, doing online research and trying to fit everything together, I finally manage to remove the default publisher that comes with the system and add a new one that eventually works!

Finally figured out how to deal with IPS publishers

The v9os operating system is one of the strangest Unices that I’ve ever touched in not providing the vi editor with the system! But now that I have the repository available, I can simply install vim to find out that using packages does work after all.

Installing packages (vim) works!

This is about how far I wanted to take this quick post on v9os. If I had a faster machine, I might have been tempted to try and build the system from source. But with my old SunFire… No.

While v9os might not be fit for production use, I accomplished one goal over OpenBSD: I have an operating system on the machine that is installed on ZFS!

ZFS on SPARC64 with v9os

Conclusion

The v9os operating system is an exotic one for sure. But it’s nice to see that somebody values SPARC64 machine and illumos enough to put the time required to built something like this into such a project. And actually I think it’s not half bad! I didn’t do too much with it, but it seemed stable and except for the installer problem (it would probably just have worked on an empty drive) everything worked fine.

Well, maybe some hints on how to get the package repo in place would have saved me some time… On the other hand Solaris veterans are likely to get it working with just a few commands. And while it has been kind of frustrating for a while, it has also lead to at least a basic understanding of what IPS is and how it works. I’m sure that I’d have missed at least some of that if I had just copied some lines from a guide.

I might not end up making v9os my primary operating system (for various obvious reasons). But it’s another nice little part in the mosaic of the illumos world that I’ve started exploring. Also I noticed that I’ve become a little bit more comfortable with using an OpenSolaris-derivative. Compared to my first encounter with OmniOS, it didn’t take me as long to figure out the very basics again. Which is always a good sign.

Summer Sun and microsystems

Juli is coming to an end so there should be a new article on the Eerie Linux blog! Here it is. It’s not about a single technical topic, though. More of a “meta” article. Im writing about what I’d like to be writing about soon! No, I haven’t been on vacation or anything. Sometimes things just don’t work out as planned. More on that in a second.

Illumos!

Have you noticed that I changed the header graphic? In 2016 I added beastie and puffy. And now there’s also the Illumos phoenix. Being a Unix lover, I’ve long felt that I’m really missing something in knowing next to nothing about the former Sun platform. Doing just a little bit of experimentation, I’ve become somewhat fascinated with the Solaris / Illumos world.

It’s Unix, so I know my way around for the most basic things. But it’s quite different from *BSD and Linux that I work with on a daily base – and from what I can say so far, definitely not for the worse. The system left an impression on me of being well engineered and offering interesting or even beautiful solutions for common problems! I can’t remember the last time when something in Linux-space struck me as being beautifully crafted – which is no wonder given the fact that all the tools are developed separately and are only bundled together to form a complete operating system by the distributions. While it usually works, the aspect of a consistent OS with a closely coordinated userland was one of the strong points that drew me towards *BSD. Obviously the same is true for the various Illumos distributions.

Since I’m really just starting my journey, I don’t have that much to say, yet. I plan on doing an interview with an OmniOS user who has switched over from FreeBSD not too long ago and hope that I’ll be able to arrange something. Other than that I’ll have to do some reading and will probably visit the official Solaris, too, even though I’m all for Open Source. When I feel capable of writing something remotely useful, I plan on presenting the various Illumos distributions and their strong points. Might take me some time, though, but from now on several Solaris/Illumos topics are on my todo list.

Illumos people reading this: If you’d like me to write about your OS, please help me by making some suggestions of topics for beginners! That would be very much appreciated.

BSD router

The article series about the custom-built BSD router is still the most popular one on my blog. Given that so many people are interested in this topic, I wanted to write a follow-up for quite some time now. Since the newest version of OPNsense (19.7) was released this month, I decided to finally pick that topic. Would have been nice to do a fresh reinstall and cover what has changed.

Also there have been many new firmware releases for the APU2 since I covered it. I was rather excited when I learned (in January or so) that they had finally enabled the ECC feature for the RAM! Other stuff happened, too, so I’d definitely have something to play with and to write about.

There’s only one problem… As of exactly this month, I don’t have a working APU2 anymore. If you have children, keep your stuff out of their reach! It doesn’t make that great a toy, anyway.

So this topic has to be postponed due to lack of hardware. But I will get a new one sometime and then write about it. I already have some ideas on what to there for a second mini series.

Ravenports

Another thing that I’d have liked to write about is my favorite packaging system, Ravenports. There’s a pretty big thing coming soon (I hope), but it’s not there, yet. So no new issue of the “raven report” this month!

Other than that big change, I still have the other issue on my todo list: Re-bootstrap on FreeBSD i386. I’ve done that once (before the toolchain update to gcc 8) and will do it again as I find the time. Of course right now it makes sense to wait for the anticipated new component to land first!

I’ve also been thinking about writing a bootstrap script. Probably I’ll give it a shot – and if it can do i386, I’ll have that covered, too.

HardenedBSD

This has been on my list for over a year now, too. I took a quick look at that project and like what they do very much. It’s basically FreeBSD with lots and lots of security enhancements, built and maintained by a small team of people dedicated to make FreeBSD more secure. Why a separate project, then? For the simple reason that FreeBSD is a huge project where several parties have various interests in the OS and where getting very invasive changes in is sometimes not that easy. So HardenedBSD is developed in parallel to give the developers all the freedom to make changes as they please.

Except for all the security related stuff there are a few things where the system is different from upstream FreeBSD, too. I’ll need to explore this a little more and start actually doing stuff with HardenedBSD. Then I’ll definitely write about it here on the blog.

Ports and packages

In 2017 I wrote about package management and Ports on FreeBSD in a mini series of articles. It ended with building software from ports. Actually it wasn’t meant to end right there, as I had at least two more articles in the pipe. I’ll be concentrating on this one and hope to have a blog post out in early August.

Other stuff

My interest in the ARM platform has not vanished and I want to do more with it (and then probably blog about it, too). Also I want to revisit FreeBSD jails and still have to get my series on email done… And I’m not done with the “power user” series, either.

So there’s more than enough topics and far too little time. Let’s see what I can get done this year and what will have to wait!

Testing OmniOSce on real hardware

[edit 07-02]Added images to make the article a little prettier[/edit]

Last year I decided to take a first look at OmniOSce. It’s a community-driven continuation of the open source operating system that originated at OmniTI. It is also an Illumos distribution and as such a continuation of the former Open Solaris project by Sun that was shut down after Oracle acquired the former company.

In my First post I installed the OS on a VM and showed what the installation procedure was like. Post two took a look at how the man pages are organized, system services with SMF, as well as user management. And eventually post three was about doing network configuration by hand.

One reader mentioned on Reddit that he’d be more interested in an article about an installation on real hardware. I wanted to write that article, too – and here it is.

Scope of this article

While it certainly could be amusing to accompany somebody without any clue on what he’s doing as he tries to find his way around in a completely unfamiliar operating system, there’s no guarantees for that. And actually there’s a pretty big chance of it coming out rather boring. This is why I decided to come up with a goal instead of taking a look at random parts of the operating system.

Beautiful loader with r151030

Last time I wanted to bring up the net, make SSH start and add an unprivileged user to the system so I could connect to the OmniOS box from my FreeBSD workstation. All of that can be done directly from the installer, however and while I went the hard way before, I’m going to use those options this time. My new goal is to take a look at an UEFI installation, the Solaris way of dealing with privileged actions as well as a little package management and system updates. That should be enough for another article!

OmniOSce follows a simple release schedule with two stable releases per year where every fourth release is an LTS one. When I wrote my previous articles, r151022 was the current LTS release and r151026 the newest stable release (which I installed). In the meantime, another stable release has been released (r151028) and the most recent version, r151030, is the new LTS release. Since I want to do an upgrade, I’m going to install r151028 rather than r151030.

To boot or not to boot (UEFI)

My test machine is configured for UEFI with Legacy Modules enabled. Going to the boot menu I see the OmniOSce CD only under “legacy boot”. I choose it, the loader comes up, boots the system and just a little later I’m in the installer. It detects the hard drive and will let me install to it. The default option is to install using the UEFI scheme, so I accept that. After the installation is complete, I reboot – and the system cannot find any bootable drives…

Ok, let’s try the latest version. Perhaps they did some more work on UEFI? They did: This time the CD is listed in the UEFI boot sources, too and a beautiful loader greets me after I selected it. The text and color looks a bit nicer in the EFI mode console, too. I repeat the installation, reboot… And again, the hard drive is not bootable!

This machine does not support “pure” UEFI mode. I switch to legacy mode and try the older CD image again. Installing to GPT has the same effect as before: The system is not bootable. I do not really want to use MBR anymore, but fortunately the OmniOS installer has two more options to work around the quirks of some EFI implementations. Let’s try the first one, GPT+Active. Once again: The system is not bootable… But then there’s GPT+Slot1 – and that finally did the trick! The system boots from hard disk.

At this point I decided to sacrifice another machine for my tests. It doesn’t even recognize the newer r151030 ISO as an UEFI boot source – neither in mixed mode nor in pure UEFI mode. But things are getting even more weird: I install OmniOS for the UEFI scheme again and the system does recognize the drive and is able to boot it – however only in legacy mode!

UEFI is a topic for itself – and actually a pretty strange one. It has meant headaches for me before, so I wouldn’t overrate OmniOS not working with the UEFI on those particular two machines. My primary laptop will try to PXE-boot if a LAN cable is attached – even though PXE-booting is disabled in the EFI. Another machine is completely unable to even detect (!) hard drives partitioned with GPT when running in legacy mode… To me it looks that most EFI implementations have their very own quirks and troubles. Again: Don’t overrate this. The OmniOS community is rather small and it’s completely impossible for them to make things work on all kinds of crappy hardware.

Chances are that it just works on your machine. While I’d like to test more machines, I don’t have the time for this right now. So let’s move on with GPT and Legacy/BIOS boot.

Installation

I like Kayak, the installer used by OmniOS. It’s simple and efficient – and it does it’s thing without being over-engineered. Being an alternative OS enthusiast, I’ve seen quite a bunch of installation methods. Some more to my liking, some less. When it comes to this one, I didn’t really have any problems with it and am pretty much satisfied. If I had to give any recommendation, I’d suggest adding a function to generate the “whatis” database (man -w) for the user (and probably make that the default option). I’ve come to expect that the apropos command just works when I try out a new system. And other newcomers might benefit from that, too.

Creating a test user with the installer

When I installed OmniOS last year, I ran into a problem with the text installer. I reported it and it was fixed really, really quickly. Of course I could not resist the temptation to try out the text installer for this newer release. With r151028 it works well. However it doesn’t offer any options over the new dialog-based one (on the contrary), so I’d recommend to use the new one.

Shell selection for the new user

As mentioned above, this time I decided to let the installer do the network setup and create a user for me (which made /home/kraileth my home directory and not /exports/home/kraileth!). When creating a user, I’m given the choice to use either ksh93, bash or csh. The latter is just plain old csh, and while I prefer tcsh over bash anytime, this is not such a tempting choice. But the default (ksh) is actually fine for me.

Selecting privileges for the new user

More interesting however is the installer’s ability to enable privileged access for the new user: I can choose to give it the “Primary Administrator” profile and / or to enable sudo (optionally without password).

Several new configuration options in the r151030 installer

Also the installer for r151030 features a few new options like enabling the Extra repository or the Serial Console. Certainly nice to see how this OS evolves!

Profiles

The installer allowed me to give my user the privilege to use sudo. Just like with *BSD and Linux this gives me the the ability to run commands as root or even become root using sudo -i. But this is not the only way to handle privileged actions. In fact there is a much better one on Solaris systems! It works by using profiles.

What are profiles? They are one of the tools present in Solaris (and Solaris-derived systems) that allow for really fine-grained access control. While traditional Unix access control is primitive to say the least, the same is not true for Solaris.

Taking a peek at user’s profiles

Let’s see what profiles my user has:

$ profiles
Primary Administrator
Basic Solaris User
All

My guess here is that every user has the profiles “All” and “Basic Solaris User” – while the “Primary Administrator” was added by the installer. The root user has some more (see screenshot).

The profiles of a user are assigned in the file /etc/user_attr and the actual profiles are defined in /etc/security/prof_attr. While all of this is probably not rocket science, it definitely looks complex and pretty powerful. Take a look at the screenshot to get a first impression and do some reading on your own if you’re interested.

Some profile definitions

As a newbie I didn’t know much about it, yet. The profiles mention help files however, and so I thought it might be worth the effort to go looking for them. Eventually I located them in /usr/lib/help/profiles. There is an HTML help for people like me who are new to the various profiles.

Help file for the “Primary Administrator” profile

Privileged Actions

Alright! But how do you make use of the cumulative privileges of your profiles? There are two ways: Running a single privileged command (much like with sudo) or executing a shell with elevated privileges. The first is accomplished using pfexec like this:

$ pfexec cat /root/.bashrc

Playing with privileged access

The system provides wrappers for some popular shells. However not all of the associated shells are installed by default! So on a fresh installation you should only count on the system shells.

Wrappers for the various profile shells

Basic package management

In the Solaris world there are two means for package management, known as SVR4 and IPS. The former is the old one used up to Solaris 10. I did a little reading on this and it looks like they are quite similar to the traditional *BSD pkg_tools. Basically it’s a set of programs like pkginfo, pkgadd, pkgrm and so on (where it’s really not so hard to tell from their names what they are used for).

The newer one uses the pkg(5) client command of the Image Packaging System. While the name of the binary suggests a relation with e.g. FreeBSD’s pkg(8), this is absolutely not the case.

Package management is a topic that deserves its own article (that I consider writing at some point). But basic operation is as simple as this:

$ pfexec pkg install tmux

It’s not too hard to anticipate that after a short while, Tmux should be available on your system (provided the command doesn’t error out).

System updates

Updating the operating system to a new release is a pretty straight-forward process. It’s recommended (but optional) to create a Boot Environment. The first required step is setting the pkg publisher to a new URI (pointing to a repository containing the data for the new release). Then you update the system (preferably to a new Boot Environment that is made the standard one) and reboot. Yes, that’s all there is to it.

System upgrade to version r151030

After the reboot you’ll see the new boot menu and better looking system fonts – even without using UEFI. Obviously r151030 implements a new frame buffer. I’ve also noticed that boot and especially shutdown times have decreased notably. Very nice!

Upgrade finished

Conclusion

If you’ve never worked with a Solaris-like system this article might have provided you with some new insights. However we’ve barely scratched the surface. The profiles are looking like a great means of access control to me, but usually you’d want to use OmniOSce for different reasons. Why? Because it has some really cool features that make it the OS of choice for some people who are doing impressive things.

What are those features? So far we didn’t talk about ZFS and the miracles of this great filesystem/volume manager (I’ve mentioned Boot Environments, but if you don’t know what BEs are you of course also don’t know why you totally want them – but trust me, you do). We didn’t talk about zones (think FreeBSD’s jails, but not quite – or Linux containers, but totally on steroids). Also I didn’t mention the great networking capabilities of the OS, the debugability and things like that.

As you can see, I probably wouldn’t run out of topics to write about, even if I decided to switch gears on my blog entirely to Illumos instead of just touching on them among more BSD and Linux articles. If you don’t want to wait for me to write about it again – why don’t you give it a try yourself?

Rusted ravens: Ravenports march 2019 status update

It’s been a couple of months since I last wrote about Ravenports, the universal *nix application building framework. Not exactly being a slowly moving project, a lot has happened since then.

Platform support

Raven currently supports DragonFly BSD, FreeBSD, Linux and Solaris/Illumos, the latter being only in the form of binary packages (except for when you have access to an installation of Solaris 10u8 – which can be used to build packages, too).

People following the project will notice the lack of macOS/Darwin support mentioned here. This is not a mistake as support for that platform has been put on hold for now. While Raven has successfully been bootstrapped on macOS before, the developers have lost access to any macOS machines and thus cannot continue support for it.

This does not mean that platform is gone forever. It might be resurrected at a later point in time if given access to a Mac again. The adventurous can even try to bootstrap Raven on different platforms now as the process has been documented (with macOS as the example).

I intended to do some work on bootstrapping Raven on FreeBSD/ARM64 – only to find that FreeBSD unfortunately still has a long way before making that platform tier 1. At work I had access to server-class ARM64 hardware, but current versions of FreeBSD have trouble booting up and I could not get the network running at all (if you’re interested in the details see my previous post). I’m still hoping for reactions on the mailing list but until upstream FreeBSD is fixed on ThunderX trying to bootstrap does not make much sense.

Toolchain and package updates

The toolchain used by Ravenports has been updated to GCC 8.3 and Binutils 2.32 on all four supported platforms (access to Mac was lost before the toolchain update).

As usual, Solaris needed a bit of extra treatment but up to date compiler and tools are available for it now, too. Even better: The linker from the LLVM project (lld) is available and usable on Solaris/Illumos now as well. Since it takes several hours (!) to link on Solaris, a mostly static lld executable was added to the sysroot package for that platform. This way this long-building package does not have to be rebuilt as often.

Packages have been rebuilt with this bleeding-edge toolchain (plus the usual fallout has been collected and fixed). So if you are using Raven, you are making use of the latest compiler technology with the best in optimization. Of course a lot of effort went into providing the most current versions of the packaged software, too (at least where that is feasible).

On the desktop side of things I’ve added the awesome window manager to the list of available software. It’s actually my WM of choice, but not too many people are into tiling so I postponed this one for after making Xfce available. Work on bringing in more Lua-related ports for an advanced configuration it is ongoing, but the WM is already usable as it is now.

I’ve also done a bit of less visible work, going back to many ports that I created previously and added in missing license info. This work is also not completed, yet, but the situation is improving, of course.

Rust!

One of the big drawbacks of Ravenports as stated last time, was the lack of the Rust compiler. This effectively meant a showstopper for things like current versions of Firefox, Thunderbird, librsvg, etc. The great news is that this blocker has been mostly removed: Rust is available via Raven for Dragonfly, FreeBSD and Linux! Solaris/Illumos support is pending, I think that any helping hand would be greatly appreciated.

Bringing in Rust was a big project on its own. Adding an initial bootstrap package for Dragonfly alone took months (thank you, Mr. Neumann!). The first working version of the port made Rust 1.31 available. It has since been updated to version 1.32 and 1.33 and John has added functionality to the Raven framework to work with Rust’s crates as well as scripts to assist with future updates. Taking all of that into consideration, Rust support in Raven is already pretty good for the short time that we have it.

Eventually even a port for Firefox landed – as of now it’s marked broken, though. The reason is that while it does compile just fine, the program crashes when actually started. The exact cause for this is yet unknown. If anybody with some debugging abilities has a little time on his hands, nailing down what happens would be a task that a lot of people will be benefit from for sure!

Updated ravenadm

Ravenadm, the Ravenports administration tool, has seen several updates with new features. Some have brought internal changes or new features necessary for new or updated packages. One example is a project-wide fix for ports that build with Meson: Before the change many programs needed special treatment to make Meson honor the rpath for the resulting binaries. Now Raven can automatically take care of this, saving us a whole bunch of sed commands in the specification file. Another new feature is the “Solaris functions” mechanism which can automatically fix certain functions that required generating patches before. Certainly also very nice to have!

Probably my favorite new feature is that Ravenadm now supports concurrent processes in several cases: While you cannot start a second set of package builds at the same time for obvious reasons, it is now possible to ask Ravenadm in which bucket a certain port lives, sort manifests, and such while building packages! I cannot say how much the previous behavior got in my way while doing porting work… This makes porting much, much more pleasant.

A last improvement that I want to mention here is a rather simple one – however one that has a huge impact. Newer versions of Ravenadm put all license-related texts into the logs! This means you can simply look at the log and see if e.g. the terms got extracted correctly. Before you had to use the ENTERAFTER option to enter an interactive build session and look at the extracted file. This is a huge improvement for porters.

SSL

Another big and most likely unique feature added to Raven recently is SSL autoselection. Raven has had autoselection facilities for Python, Ruby and Perl for about a year now. The latter allow for multiple versions of the interpreters to be installed in parallel and take care of calling the actual binary with the same parameters, preferring the newest version over older ones (until configured differently).

Raven supports LibreSSL, OpenSSL as well as LibreSSL-devel and OpenSSL-devel. Before the change, you could select the SSL library to use in the profile and it would be used to link all packages against it. Now we have even more flexibility: You can e.g. build all the packages against LibreSSL by default and just fall back to OpenSSL for the few packages that really require it!

And in fact Raven takes it all one step further: You can have OpenSSL 1.0.2 and OpenSSL 1.1.1 (which introduced braking changes) installed in parallel and use packages on the same system where some require the new version and some that cannot use it, yet! Pretty nice, huh?

Future work

Of course there are still enough rough edges that require work. Probably the most pressing issue is to get Firefox working so Raven’s users can have access to a convenient and modern browser. There are also quite some programs which need ports created for them. The goal here is to provide the most critical programs to allow Dragonfly to make the switch from Dports to Ravenports for the official packages.

On FreeBSD Filezilla does not currently work: It cannot be built with GCC due to a compiler bug in GCC 7.x and 8.x. Therefore it is a special port that get’s build with Clang instead. The problem is that libfilezilla needs to be built with the same toolchain – and that cannot currently be built with Clang using Raven…

Raven on Linux has some packages not available due to additional dependencies on that platform. I begun adding some Linux-specific ports but lost motivation to do so pretty fast (there are enough other things after all). Also the package manager is still causing pain, randomly crashing.

Solaris is also missing quite some packages. This is due to additional patches being required for a lot of software to build properly. Ravenports tries to support this platform as good as possible; however this could surely be improved if anybody using Solaris or an Illumos distribution as his or her OS of choice would start using Raven and giving feedback or even contribute.

Get in touch!

Interested in Raven? Get in touch with us! There is an official IRC channel now (#ravenports on Freenode) which is probably the best place to talk to other Raven users or the porters and developers. You can of course also send an email.

If you want to contribute, there is now a new “Customsource” repository on GitHub that you can create pull requests against. Feel free to contribute anything from finished ports that might only need polish to WIP ports that are important for you but you got stuck with.

There are many other means of helping with the than project then doing porting work, though. Open issues if you find problems with packages or have an idea. Also tell us if you read the wiki and found something hard to understand. Or if you could use a tutorial for something – just ping me. Asking doesn’t hurt and chances are that I can write something up.

Got something else that I didn’t talk about here? Tell us anyway. We’re pretty approachable and less elitist than you might think people who work on new package systems would be! 😉

Ravenports explained: Why not just join XYZ?

As the year comes to an end, I’ve seen quite some interest in my previous post. There has been a question on Reddit what the benefit(s) of Raven over Pkgsrc might be and why the developers don’t simply join an existing effort instead of building something new.

I’ve touched on this topic about half a year ago, but I think the question is worth a detailed reply that fully covers both parts of it. So I’ll try to answer 1) why Ravenports exists in the first place and 2) what sets it apart from Pkgsrc and other ports systems.

Why maintain Ravenports instead of working on Pkgsrc?

Well, obviously because its author felt it was worthwhile to start and maintain the project! Of course that leads to another and more important question – why didn’t John Marino just join e.g. Pkgsrc instead? The answer to that is: Well… He did.

John got his NetBSD commit bit and became a Pkgsrc developer back in the day when DragonflyBSD still used Pkgsrc by default. He maintained a ton of ports there and made sure that other people’s ports still worked on DF after they had been updated. DragonflyBSD had been considered a first-class citizen by Pkgsrc. However there had been two big problems:

1) Being primarily a NetBSD project, Pkgsrc development takes place mostly on NetBSD of course. Things were tested on NetBSD and then committed. There was no testing done on the other supported platforms – which is a completely comprehensible decision given the amount of ports available and the number of supported platforms as well as the need to get software updated in a somewhat timely manner! However this lead to frequent breakage. A few suggestions that made sense from the Dragonfly perspective could not be agreed upon taking the whole of Pkgsrc into account. In the end the policy was: “If things in the tree break for your platform, go ahead and fix it.” So basically the answer to problem 1 was: “Throw more manpower at it.”

2) As the small project that DragonflyBSD is, there simply were not too many people available for this task however. In fact it was largely John alone who did most of the work with some help here and there. It’s impossible to spend resources that you don’t have available!

As you can see problem 1 causes problem 2 – and that one proved to be unfixable. Thus the problems with Pkgsrc grew and there was really not much that could have been done about it. And as the suggestions to somewhat relieve the worst impact were turned down, Dragonfly had to give up Pkgsrc. Please keep in mind that there’s a major difference between how Dragonfly used Pkgsrc and how some other platforms do. Sure, it’s great that you can use Pkgsrc on AIX to obtain some current software. Same thing for many other systems. Dragonfly used Pkgsrc just as NetBSD does, though: As the primary means to get software installed. Large-scale breakage of packages is a no-go in such a case, especially if it happens somewhat often and was bound to happen again and again.

Ok – another project then. Adapt the FPC maybe?

John then brought the new FreeBSD package manager as well as the FreeBSD ports collection over to Dragonfly with a system called “delta ports” or Dports. It’s basically an overlay with patches that Dfly requires to build those ports. Even though the FPC is meant for FreeBSD only and Pkgsrc – being cross-platform – might seem like the more logical candidate, this worked out a lot better and John maintained Dports for years.

In maintaining so many ports for both Pkgsrc and Dports he had a quite few ideas on how to do things better. They wouldn’t fit into the projects as they were organized, though. So he begun playing with various things on his own. Then… FreeBSD introduced flavored ports.

Don’t get me wrong here: I’m a FreeBSD user and I’m glad that flavored ports are finally available. However from a technical point of view they are implemented in a way that’s far from perfect. This is no wonder, though: When the ports tree was first introduced, nobody thought of flavors. What we have today is a fine example of a feature implemented as an afterthought. It works, yes, but it meant a disrupting change and broke expectations of all ports-related programs. It also made maintaining Dports much, much more time-intensive – to the point where it becomes no longer feasible to keep it up.

What does Ravenports have to offer over Pkgsrc?

Just like every younger project, Ravenports has the considerable advantage of starting fresh without the burden of choices that seemed right in the past but were probably regretted later. If this is combined with the will to learn from previous attempts to get packaging right as well as considerable experience with those, this has a lot of potential.

Think about it for a moment: FreeBSD’s ports collection shipped with the 1.0 release of the OS – and thus was created back in 1993. Pkgsrc began as a fork of it in 1997. So both were originally designed in a decade that has long passed (and in fact not even in this millennium!). Yes, both have been modernized over time. There are limits to this, however. It can be pretty hard to integrate new features into a structure that never meant to support anything like that. Do you think anybody in the mid 90’s could have thought about the needs of today? Ravenports deliberately does not support some old cruft. It’s meant for the coming decade of the 2020’s.

Here’s some strong points where Raven is ahead of Pkgsrc:

  • Tooling:
  • It offers a modern, integrated solution. There’s one control program (“ravenadm”) that deals with everything regarding Ravenports: It’s used to configure the package building system, it fetches the buildsheets (ports) and keeps them up to date, it builds all the packages or a subset thereof, …

  • Pristine package builds:
  • Everything is built in a chroot sandbox specifically assembled for that build process. There is no way that build dependencies clutter your build system (chances are you don’t want to use m4 or automake yourself and thus don’t need them installed on the OS). There’s also no way that installed packages of your system pollute the packages that Raven builds: The isolation prevents e.g. linking against additional stuff that you didn’t mean to.

  • It’s fast:
  • Did you ever run a bulk-build for Pkgsrc packages? Ravenports optimizes build times on modern systems by taking advantage of memory disks and such. The port scan alone makes a huge difference.

  • Potentially package manager agnostic:
  • Currently Raven supports only the Pkg package manager but as all it does is build packages, it was designed to support additional package managers if needed. You actually want it to generate rpm or pacman packages? Not currently implemented but certainly possible if desired.

  • Powerful default package manager:
  • Pkg, a modern tool for package management, is quite capable. If you read the manpages for it you will find out that it’s loaded with useful features. The old pkg_tools that Pkgsrc still use totally pale in comparison – and rightfully so.

  • Easy administration of multiple repos:
  • Need multiple repositories? No problem. Just create profiles for them. E.g. one that uses LibreSSL and another one that links against OpenSSL instead. Also you can choose the default version of Perl, Python, Ruby, ect. to use. And you can choose if MySQL should be Oracle’s MySQL, MariaDB, Galera, ect.

  • Convenient use of custom ports:
  • Can you use custom ports that are not in the official buildsheet collection? Sure thing. You can create directories for your custom ports and even use different ones in different profiles. Want to change an existing port? Just place one with the same name in your custom port directory and it will override the original one. Buildsheets from custom ports are generated automatically so there’s no hassle there. It probably doesn’t get much more convenient!

  • Variants and subpackages:
  • Package variants (i.e. “flavors”) and subpackages are not an afterthought and are thus used excessively right from the beginning. This makes package management with Raven very flexible.

  • Testing:
  • The Ravenports system has very strict rules for buildsheets. If the ravenadm tool considers a port to be valid, it is almost guaranteed that it is actually fine. Also packages can not only be mass-built but they can also be tested automatically as well (Is the RPATH ok? Are all required shared objects available? Is the manifest file complete? Are the required descriptions in place? Is the license ok or lacking? Things like that).

  • Automation:
  • Ravenports tries to automate many things that do not actually need human attention. For example quite often Python-related ports can be auto-generated. This saves time and effort of the maintainers that can be better spent on other things.

  • Modern day development:
  • Want to contribute something? It’s extremely easy. If you have a GitHub account you’re all set: Fork the git repo, make your changes, then commit and push them. Now all that’s left is opening a Pull Request. Yes, that’s all. If you don’t have a GH account, create one. Or send us patches as it was traditionally done. Ravenadm will happily create a template for you to assist you if you want to contribute a new port.

  • No ports ownership:
  • In Ravenports nobody “owns” a port. If you submitted one you become a contact for it. If somebody wants to make major changes to the port, that person is expected to contact you and communicate the proposals. Small or trivial changes however (like a simple version upgrade) can be done by anybody. This ensures rapid development and very fast adoption of new versions even if the original porter does not currently have the time to maintain everything in a timely manner.

  • Fast releases:
  • Ravensource provides new releases quite often. This way you can get pretty fresh software early on. There is no fixed time frame for it, though: Releases are made when it makes sense. If there have been major changes to the tree the next release might be delayed for testing.

  • Binary bootstrap:
  • Ravenports has a very simple and fast bootstrap process that makes use of binary packages for the respective platform. No system compiler required! Raven brings in its own full toolchain.

There are of course cases where it makes sense to use Pkgsrc and it’s not too hard to find any: E.g. if you need packages for a platform that’s unsupported in Raven or if you need software not yet available there. In the end this is Open Source: We’re all friends and using the right tool for the job makes sense.

Couldn’t Ports/Pkgsrc be modernized?

I’ve used Pkgsrc both in private and at work and I’m pretty happy that it’s available when I need it. But I don’t like the old pkg_tools much. They do their job but they are far from modern programs and really feel like relics today. And while I’m pretty happy with FreeBSD’s ports, those aren’t portable (and for some reason I’ve never been completely happy with Poudriere, FreeBSD’s package builder).

Before finally creating Ravenports, John wrote Synth, a very nice package builder for FreeBSD and DragonflyBSD that supports Ports/Dports. It has been put on hold in favor of Raven, but it is still maintained and I continue to use it on FreeBSD to build my packages.

John also created Pkgsrc-synth. It’s a version of Pkgsrc that uses the Pkg package manager. I’ve never tried it out – but it was stopped exactly two month ago as there seems to not have been any interest from the Pkgsrc people. I think this is a pitty, as pkg is really nice and has the right license for any BSD project. It could have been a chance to move Pkgsrc into a more modern direction. But meh.

Conclusion

Raven does not exist because everything else sucks. It exists because all the other candidates proved to not quite fit the needs of Ravenport’s author. As such it is a chance to keep the good parts of its various precursors that it heavily draws inspiration from. It’s a chance to combine these good parts to make something awesome. And it’s a chance to implement a lot of new ideas that should make sense in modern-day *nix package building which – for various reasons – cannot have a place in the old projects.

There’s still a lot of work to do, but we’re getting there. In my previous post I wrote that one of the big shortcomings was the lack of Rust. In the meantime Rust support has landed for DragonflyBSD, FreeBSD and Linux.

If there are any more questions feel free to post them here. I’m not on Reddit and I just saw the above question by accident. So I cannot promise to answer anywhere else than here.

Happy new year everyone!

One year of flying with the Raven: Ready for the Desktop?

It has been a little over one year now that I’m with the Ravenports project. Time to reflect my involvement, my expectations and hopes.

Ravenports

Ravenports is a universal packaging framework for *nix operating systems. For the user it provides easy access to binary packages of common software for multiple platforms. It has been the long-lasting champion on Repology’s top 10 repositories regarding package freshness (rarely dropping below 96 percent while all other projects keep below 90!).

For the porter it offers a well-designed and elegant means of writing cross-platform buildsheets that allow building the same version of the software with (completely or mostly) the same compile-time configuration on different operating systems or distributions.

And for the developer it means a real-world project that’s written in modern Ada (ravenadm) and C (pkg) – as well as some Perl for support scripts and make. Things feel very optimized and fast. Not being a programmer though, I cannot really say anything about the actual code and thus leave it to the interested reader’s judgement.

If you’re interested in a more comprehensive introduction to Ravenports, I’ve written one half a year ago.

Platforms

Ravenports has initially been developed on DragonFly BSD. When I became aware of it, it had already been ported to work on Linux, too. I liked the idea of the project, but had no DF or Linux boxes available for tinkering and didn’t feel like setting one up. Thus I moved on.

As I checked back a little later, FreeBSD support had been added. Since I had just lost my excuse not to try it out right away, I started playing with it – and was pretty happy. At that time I had trouble to get a port that I wrote into FreeBSD’s Ports Collection and thought that Raven could be an excellent playground to learn something and get a bit of experience that might help me later with FreeBSD.

The Xfce4 desktop – installed via Raven

I’ve long changed my mind, though! Raven is rather similar to FreeBSD’s ports system in many ways but where it differs it’s clearly superior. Also I love the cross-platform aspect and thus Raven is simply the better place for me to make home.

This year saw the introduction of Solaris/Illumos support that I tried out on OmniOS. Also Darwin support landed, upping the count of supported platforms to 5 already! Not too bad for a young project, huh? While Raven does work on all five platforms now it does so to varying degrees. But more on that later.

General activity

The Ravenports project consists of multiple Git repositories hosted on GitHub. The first one is Ravensource which most importantly holds the “raw” ports as they are written by the porters. It’s the most busy repo with over 5.200 commits since March 2017 (including almost 500 by me).

Then there’s the actual Ravenports repo that mostly contains the buildsheets which are compiled from Ravensource. It has over 1.400 commits right now.

Installing the xfce-single-core meta-package

Finally there’s the repo for the Ravenadm command-line tool. It’s approaching 900 commits since February 2017.

There’s still more to Raven like the Pkg package manager from FreeBSD (that was modified to add Zstd compression support) or libbsd4sol, a portability library which allows building code on Solaris that uses BSDisms (which was needed to add support for that platform to Raven). Most of the work on all repos was done by John alone.

With over 100 pull requests and more than 20 issues it’s clear now that there’s some interest in the project. Raven is still very small, though, with 6 people haveing contributed ports so far. After learning the basics and opening pull requests for half a year, I’ve been granted write-access to the source repository. Just recently I was able to push my 100th active port (there have been ports that became obsolete and were removed).

In general I’d say that there could of course be more people around and that the project would benefit from being able to provide more packages – though more than 3.200 is not bad at all! Also it’s good that there seems to be a growing user base which is even more important than having more porters join in. From my point of view, Raven is a healthy and fast-moving project. Still young, but doing well and heading in the right direction.

Major changes

There have been some pretty big changes that happened with Raven over time. Initially John started with a GCC6-based toolchain, only to switch to GCC7 when that was released. That was before my time with the project, but I witnessed the switch to GCC8.

Changing the toolchain certainly is a major interruption and most people are advised to just wait for the official repository to be re-rolled and then update. I had some bad luck in this regard – literally the day after I finally completed a working (and almost complete) set of basic packages for the FreeBSD_i386 platform, I faced the change to GCC8. Due to a lack of time I still haven’t repeated the switch on i386 (but I still plan to do it sometime).

The thunar file manager

Other changes that always have a huge impact (causing lots and lots of packages to be rebuilt) is adopting a new version (as well as dropping an old one) of the popular interpreter languages like Python, Perl and Ruby. Ravenports always supports two versions of Perl and Ruby and two versions of Python 3 (as well as 2.7 for now). So when Python 3.7 was released, 3.5 was removed and Perl 5.24 had to go when 5.28 was added.

Recently the former LLVM port that included everything regarding LLVM was split (LLVM, Clang, lld, openmp). Also now and then new statements are added to Ravenadm, so that old versions cannot work with a new release of the buildsheet repository (which is called “conspiracy”). But this is pretty easy to work around compared to the changes mentioned before.

So on the whole, Raven has proven that it can easily stand even big changes. For me this is essential to build faith in a project. And Raven is doing well in this regard.

Desktop-ready?

There are lots of people who will want to use Raven on servers. That’s totally fine of course. But for a project as ambitious as Ravenports, it’s necessary to provide a somewhat comfortable environment for the developers and the users alike. If it doesn’t manage to become a daily driver for people it cannot succeed.

For that reason I decided to work towards good desktop support for the little dev machine that I dedicated to my work on the project. When I started, X11 was already working and Openbox had freshly landed in the repos. So I had a simplistic environment to work with: Openbox + Xterm. However I could not even change my keyboard layout! Therefor I wrote a port for setxkbmap and eventually it was accepted as the first outside contribution to the project.

The Surf web browser

Next I did some work to get the FLTK toolkit and the EDE desktop in. Then I added my favorite terminal emulator, Sakura. This worked out pretty well and the biggest shortcoming at the end of 2017 was that there was no real graphical browser available. A lot has changed since then!

Desktop choices

Today you can choose between multiple window managers, both floating and tiling:

  • twm
  • cwm
  • openbox
  • fluxbox
  • xfwm4
  • pekwm
  • i3

And in case you prefer a real desktop environment, there are also several available:

  • Lumina (moderate, Qt-based)
  • Xfce4 (somewhat light-weight, GTK-based)
  • EDE (extremely frugal and minimalistic, FLTK-based)

Two graphical web browsers are available, Surf (which is deliberately simplistic and does not even support tabs) as well as an old version of Firefox (the last one that builds without Rust). This is certainly not perfect but much better than a year before.

Also other important programs are available, including LibreOffice! Last month the Apache webserver landed – which is a pretty complex port compared to many others.

Shortcomings

Are there packages you’ll miss? Most certainly. However there’s a wishlist now with ports that people would like to see created (please feel free to add more requests there). And that’s another good step ahead. Currently it’s almost 120 items long. Fortunately there’s been some success, too, and 26 requested ports have been created and taken of the list so far.

There are some future ports that will require lots of effort (hint: Help wanted!). The most important one that blocks some other important ports is the Rust compiler. There has been some work done on this but it’s not done, yet. Another real beast is TeX. This totally must be supported at some point. Current versions of Firefox and Chromium are often asked for. And somebody even requested Eclipse (which needs Java!). So there’s definitely more than enough work to do.

Using Raven on Linux works, but there are some flaws. Initially the Pkg package manager used to crash quite often. John traced that back to a bug in the version of SQlite that’s used internally by Pkg: The problem only struck on Linux and was fixed by using a newer version instead. While it’s much better now, there’s still the occasional problem with it.

While the packages from the repo work finde on Solaris 10u8 and above as well als Illumos, the exact version 10u8 is currently required to build packages. This is due to Solaris not being able to work with older system libraries in the build chroot. It would be great to haven an alternative ravensys-root for any Illumos distribution (OmniOS, SmartOS, Tribblix, …) available so that interested people without access to that specific closed-source Solaris version can develop Raven on that platform.

I don’t know how well Raven works on Darwin. Since I don’t have access to any macOS machines and PureDarwin is not really ready, yet, there’s currently no chance for me to test it. I intend to buy an older MacBook or something in the future, though, if I come across a fair offer and have some money available to spend on my hobby.

Some ports are not available on one platform or the other: Illumos mostly because they’d require patches to build and Linux often because it relies on additional libraries that have not yet been added to Raven. And then there’s a lot of packages that are mostly untested. All of these issues can be fixed, of course. All of those require a larger user-base, though. So it’s probably the best strategy to keep working on making Raven attractive to more users and address things when the right people show up.

What’s to come?

Currently Raven uses the primordial X11 input drivers (xf86-input-keyboard and xf86-input-mouse) on all platforms. In 2013 Linux pioneered support for generic input drivers by exposing the kernels “event devices”. Not too much later many Linux distributions adopted xf86-input-evdev. In 2014 there was a GSOC project to add evdev support for FreeBSD. Like many projects it came along a good part of the way but eventually was left unfinished. It was picked up and completed by a FreeBSD developer in 2016.

Xfce’s settings and applications menu

To use it, a special kernel had to be built so it would expose /dev/input device nodes. Then a sysctl had to be set – and eventually X11 had to be patched for emulated udev support… Why would anybody want to do all this just for different input drivers? Multi-touch support is just one valid reason. Another one is that having evdev-based input drivers is half the way to eventually support libinput, too. And that is one of the prerequisites for Wayland!

This month FreeBSD has finally enabled evdev support in the GENERIC kernel in both -CURRENT and 12-STABLE. That means the upcoming FreeBSD 12.0 will not support it out of the box, but most likely a future 12.1 will. Dragonfly BSD has also grown support for event devices and people are interested in working towards Wayland. I hope that we’ll be able to get xf86-input-evdev working with our X11 (on Dragonfly, FreeBSD and Linux) next year,

I’m taking a little break from Xfce now (but plan to port most of the remaining components later to make it a well-supported DE in Raven). There are a few things I have planned like adding Linux support for OpenVPN (it depends on some libraries and programs that are Linux only which are not yet in Raven). Also I intend to take a look at adding some more Qt5 components and write a few requested ports. And finally I want to write another post next year – a tutorial on using Ravenports and creating new ports.

So keep flying with us – it’s exciting times!

Exploring OmniOS in a VM (2/2)

This is the second part of my post about “exploring OmniOS in a VM”. The first post showed my adventures with service and user management on a fresh installation. My initial goal was to make the system let me ssh into it: Now the SSH daemon is listening and I’ve created an unprivileged user. So the only thing still missing is bringing up the network to connect to the system from outside.

Network interfaces

Networking can be complicated, but I have rather modest requirements here (make use of DHCP) – so that should not be too much of a problem, right? The basics are pretty much the same on all Unices that I’ve come across so far (even if Linux is moving away from ifconfig with their strange ip utility). I was curious to see how the Solaris-derived systems call the NIC – but it probably couldn’t be any worse than enp2s0 or something that is common with Linux these days…

# ifconfig
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1
          inet 127.0.0.1 netmask ff000000
lo0: flags=200200849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL> mtu 8252 index 1
          inet6 ::1/128

Huh? Only two entries for lo0 (IPv4 and v6)? Strange! First thought: Could it be that the type of NIC emulated by VirtualBox is not supported? I looked for that info on the net – and the opposite is true: The default VirtualBox NIC (Intel PRO/1000) is supported, the older models that VBox offers aren’t!

Ifconfig output and fragment of the corresponding man page

Obviously it’s time again to dig into manpages. Fortunately there’s a long SEE ALSO section again with ifconfig(1M). And I’ve already learned something so far: *adm commands are a good candidate to be read first. Cfgadm doesn’t seem to be what I’m looking for, but dladm looks promising – the short description reads: “Administer data links”.

I must say that I like the way the parameters are named. No cryptic and hard to remember stuff here that makes you wonder what it actually means. Parameters like “show-phys” and “show-link” immediately give you an idea of what they do. And I’m pretty sure: With a little bit of practice it will work out well to guess parameters that you’ve not come across, yet. Nice!

# dladm show-link
LINK         CLASS     MTU    STATE     BRIDGE     OVER
e1000g0      phys      1500   unknown   --         --

Ok, there we have the interface name: e1000g0. I don’t want to create bridges, bond together NICs or anything, so I’m done with this tool. But what to do with that information?

The ifconfig manpage mentions the command ipadm – but it’s kind of hidden in the long text. For whatever reason it’s missing in SEE ALSO! I’d definitely suggest that it’d be added, too. More often than not people don’t have the time to really read through a long manpage (or are not as curious about a new system as I am and thus don’t feel like reading more than they have to). But anyways.

Ipadm manpage

# ipadm create-if e1000g0

This should attach the driver and create the actual interface. And yes, now ifconfig can show it:

Interface e1000g0 created

Network connection?

Almost there! Now the interface needs an IP address. Looks like ipadm is the right tool for this job as well. I had some trouble to find out what an interface-id is, though. The manpage obviously assumes the reader is familiar with that term, which was not the case with me. I tried to find out more about it, but was unable to locate any useful info in other manpages. So I resorted to the OmniOS wiki again and that helped (it seems that you can actually choose almost anything as an Interface ID but there are certain conventions). Ok, let’s try it out and see if it works:

# ipadm create-addr -T dhcp e1000g0/v4

No error or anything, so now the system should have acquired an IPv4 address.

IPv4 address assigned via DHCP

10.0.2.15, great! Let’s see if we can reach the internet:

# ping elderlinux.org
ping: unknown host elderlinux.org

DNS pt. 1

Ok, looks like we don’t have name resolution, yet. Is the right nameserver configured?

# cat /etc/resolv.conf
cat: cannot open /etc/resolv.conf: No such file or directory

Oops. There’s something not right here! If I configure my FreeBSD box to use DHCP that makes sure resolv.conf is populated properly. The interface e1000g0 got an IP – so the DHCP request must have been successful. But did something break before the network was configured completely? Is the DHCP client daemon even running?

DHCP

# ps aux | grep -i [d]hcp
root       551  0.0  0.1 2836 1640 ?        S 18:52:22  0:00 /sbin/dhcpagent

Hm! I’m used to dhclient, but dhcpagent is unknown to me. According to the manpage, it’s the DHCP client daemon, so that must be what OmniOS uses to initiate and renew DHCP requests. And obviously it’s running. However the manpage solves the mystery:

Aside from the IP address, and for IPv4 alone, the netmask, broadcast address, and the default router, the agent does not directly configure the workstation, but instead acts as a database which may be interrogated by other programs, and in particular by dhcpinfo(1).

Ah-ha! So I have to configure things like DNS myself. Nevertheless the system should have received the correct nameserver IP. Let’s see if we can actually get it via the dhcpinfo command that I’ve just learned about. A look at the manpage as well as at the DHCP inittab later I know how to ask for that information:

# dhcpinfo -i e1000g0 DNSserv
192.168.2.1

Right, that’s my nameserver.

Some lines from /etc/dhcp/inittab

Route?

Is the routing information correct? Let’s check.

# netstat -r -f inet
[...]
default      10.0.2.2  [...]
10.0.2.0     10.0.2.15 [...]
localhost    localhost [...]

Looks good and things should work. One more test:

# route get 192.168.2.1
   route to: fw.local
destination: default
       mask: default
    gateway: 10.0.2.2
  interface: e1000g0
[...]

Alright, then it’s probably not a network issue… But what could it be?

DNS pt. 2

Eventually I found another hint at the wiki. Looks like by default OmniOS has a very… well, old-school setting when it comes to sources for name resolution: Only the /etc/hosts is used by default! I haven’t messed with nsswitch.conf for quite a while, but in this case it’s the solution to this little mystery.

# fgrep "hosts:" /etc/nsswitch.conf
hosts:      files

There are a couple of example configurations that can be used, though:

# ls -1 /etc/nsswitch.*
/etc/nsswitch.ad
/etc/nsswitch.conf
/etc/nsswitch.dns
/etc/nsswitch.files
/etc/nsswitch.ldap
/etc/nsswitch.nis

Copying nsswitch.dns over nsswitch.conf should fix that problem.

And really: Instead of getting a ping: unknown host elderlinux.org now I get no answer from elderlinux.org – which is OK, since my nameserver doesn’t answer ping requests.

Remote access

Now with the network set up correctly, it’s finally time to connect to the VM remotely. To be able to do so, I configure VirtualBox to forward port 22 of the VM to port 10022 on the host machine. And then it’s time to try to connect – and yes, it works!

SSHing into the OmniOS VM… finally!

Conclusion

So much for my first adventure with OmniOS. I had quite a few difficulties to overcome even in this very simple scenario of just SSHing into the VM. But what could have been a trivial task proved to be rather educational. And being a curious person, I actually enjoyed it.

I’ll take a break from the Illumos universe for now, but I definitely plan to visit OmniOS again. Then I’ll do an installation on real hardware and plan to take a look at package management and other areas. Hope you enjoyed reading these articles, too!